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FOREWORD

This is one of a series of reports which summarizes the first 6-munth
phase of a planned 3-year study of thermal and atmospheric control systemns
of manned and unmanned space vehicles. The study was conducted by the
Space and Information Systems Division of North American Aviation, Inc.
under contract AF 33(616)-7635, and was sponsored by the Flight Accessories
Laboratory of Aeronautical Systemns Division (formerly Wright Air
Development Division). The Los Angeles Division of North American
Aviation, Inc., and AiResearch Manufacturing Company were subcontractors
in the study effort.

The reports covering the results of the first 6-month period of this
F study are listed below. Because of the intention to revise, amplify, and

extend the material presen~ted, each report has been designated as Part 1.

In addition to publishing these subsequent parts, new phases of the study will

result in additional reports.

ASD TR 61- 164 Environmental Control Systems Selecticon for
(Part I) Unmanned Space Vehicles (secret)F ASD TR 6 1-240 Environmental Control Systems Selection for
(Part I) Manned Space Vehicles, Volume I

(unclassified) and Volume II (secret)

ASD TR 61-161 Space Vehicle Environmental Control
(Part I) Requirements Based on Equipment and

Physiological Criteria

ASD TR 61-119 Radiation Heat Transfer Analysis for
(Part I) Space Vehicles

ASD TR 61-30 Space Radiator Analysis and Design
(Part I)

ASD TR 61-176 Integration and Optimization of'
(Part I) Space Vehicle Environmental Control Systems

ASD TR 61-162 Analytical Methods for Space Vehicle
(Part I) Atmospheric Control Processes
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ABSTRACT

ThisLdocument covers problems associated with one part of tih thermal
and atmospheric control study-toj analysis of radiation heat transfer in
space. The basic theory of radiation heat transfer and tide thermal radiation
environment in space a'e described. Analysis techniques aVe included for
calculating space vehicle surface temperatures and for solving radiation heat
transfer problems in generaj. Tabulated configuration factor data and
emittance data ate presenteA
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Section I

INTRODUCTION

STUDY PROGRAM

The Thermal and Atmospheric Control Study conducted for Aeronautical
Systems Division (formerly Wright Air Development Division) is an analytical
and experimiental program concerned with the problems of environmental
control of future space vehicles. Three broadly defined tasks were designated
for this study. They are:

1. Improved analysis methods for predicting the requirements for
and the performance of space environmental control systems

2. Improved methods, techniques, systems, and equipment required
for environniental control

3. Development of criteria and techniques for the optimization of
environmental control systems and the integration of these systems
with other vehicle systems

To accomplish these tasks, industrial organizations and military
establishments were surveyed to obtain data concerned with current and
future thermal and atmospheric control technology. Other endeavors include
evaluating existing and newly created methods of analysis, selection,
integration, and optimization of control systems and components. The
refurbishment and development of existing and new analog or digital computer
programs, applicable to this study, are included. In addition, laboratory
verification of analyses and new design concepts form a part of the effort
associated with these tasks.

To guide all of the endeavors along lines which will find immediate
and practical application, components and systems associated with specific
vehicles were studied. The vehicles selected were representative of a
number of earth-orbital and cislunar missions. These hypothetical vehicles
were carried through preliminary design and used as thermal and
atmospheric control models.

ROLE OF RADIANT HEAT TRANSFER ANALYSIS

Although transfer of heat within a space vehicle or satellite can occur
by radiation, conduction, or convection, the only means by which the vehicle

Manuscript released by the authrors M'a4y 1961 for publication as an
ASD Technical Report.
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can exchange heat with its environment is by radiation. Temperature control
systems, either active or passive, must eliminate heat by radiation to space.
An accurate method of radiation heat transfer analysis is therefore of prime
importance for the prediction of vehicle and component termperatures and
the performance of temperature control systems.

This report documents a study of available methods of radiation heat
transfer analysis and reviews the basic principles of thermal radiation.
Included in the appendix sections are tables of emissivity and reflectivity for
certain surface coatings which can be applied to space vehicles. This area
is also of prime importance because even the most refined analysis tech-
niques are only as accurate as the values of emittance and reflectance which
are used.

-2.



Section II

GLOSSARY OF RADIATION TRANSFER TERMS

The following terms conform in terminology and symbolic
representation to those most widely used in radiation heat transfer
literature.

Absorptance or Ratio of absorbed radiant energy to incident
absorptivity a radiation. Related to reflectance and

transmittance by

lea +p + rat

,Albedo, a Ratio of radiant energy reflected by planet or
satellite to that received by it. A dimensionless
decimal equal to or less than 1. Care must be
taken to avoid confusion between the albedos of
total and visible radiant energy.

Angstrom, A Unit of measurement of wavelength of electro-
magnetic waves.

1 crn= 108 10 P

Black body Hypothetical body having the characteristic of
absorbing all radiant energy striking it and
reflecting and/or transmitting none.

a = 1.0, p = r = 0

Diffuse reflection Reflection that follows Lambert's cosine law
(i.e., intensity I is constant regardless of
angle). Nonmetallic surfaces are often nearly
perfect diffusive reflectors.

Emittance, c Ratio of emissive power E of a body to emissive
power Eb of a black body at the same temperature.
A dimensionless decimal equal to or less than 1.
Distinctions are made between difference types
of emittance.

Total emittance Emittance of the whole range of wavelengths.

-3-
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Monochromatic Emittance radiating at a particular wavelength.
emittance

Hemispherical Emittance radiating in all directions from the
emnittance surface.

Normal emittance Emittance radiating in a direction normal to the
surface.

Directional emittance Emittance radiating in a direction at an angle 5
to the normal to the surface.

Emissive power E Radiant energy emitted at a given temperature
per unit time and unit area of radiating surface.
Also called flux density. Expressed as
Btu/(hour) (square foot).

Monochromatic Emissive power emitted at a single wavelength
emissive power, EX for a given temperature.

Total emissive Emissive power emitted over the whole spectrum
power of wavelengths.

A=0o
E =-E A d A

A=0

Emissivity, C See emittance. Characterizes a certain material
in pure polished and opaque form, while emnittance
pertains to a particular specimen. In this
report, however, no distinction is made between
emissivity and emittance.

Equilibrium Condition in which the interchange of radiant
energy between bodies becomes and remains
constant.

Flux density See emissive power and incident radiation.

Gray body A body or surface for which

a - a

at all wavelengths and temperatures. Its
emission distribution curve therefore parallels
that of a black body or surface but is of lesser
magnitude.
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Hemispherical Refers to the boundary condition of a specular
measurement in which the solid angle being
considered is equal to Za steradians.

Incident radiation Radiant energy impinging on a surface per unit
time and per unit area. Also called irradiation
or flux density.

"Infrared Region of the electromagnetic spectrum extending
approximately from 0. 75 to about 300 microns.

Intensity of radiation, I Rate of emission in a direction at an angle 4,
to the normal to the surface. Expressed as

energy/(area)(time)( solid angle)( cos q5)
or

energy/(time)(solid angle)(projected area)

Irradiation See incident radiation.

Isotropic radiation Radiation impinging on a surface having the
same characteristics regardless of the location
and direction of the surface.

Monochromatic Having a single wavelength and single frequency
of elect rornagnetic vibration.

Radiance See emissive power.

Radiancy See emissive power.

Radiant energy Energy emitted from a surface in the form of
electromagnetic waves.

Radiant heat Radiant energy emitted in consequence of the
temperature of a body. Usually considered to
be that part of the electromagnetic or radiant
energy spectrum between Z, 000 and 50, 000
angstroms.

Radiosity, J Sum of emitted, reflected, and transmitted
radiation flux per unit area. Usually expressed
in Btu/(hour)(square foot).
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Reflectance, p Ratio of reflected to incident radiant energy.
Related to absorptance and transmittance by

p +a+ r=

Spectral energy Monochromatic emissive power over the range
distribution of the spectrum of an emitting surface.

Specular reflection Refers to reflection which occurs in such a way
that the angle between the reflected beam of
radiation and the normal to the surface equals
the angle made by the impinging beam with the
same normal.

Stefan-Boltzmann Constant which is independent of surface and
constant, a temperature and relates heat radiated qr to

absolute temperature, area, and emissivity.
The relationship is

q= aAT

Thermal radiation See radiant heat.

Transmittance, r Ratio of radiant energy transmitted through the
body to the incident radiation. Related to
absorptance, and reflectance by

r+a +p = 1

Total radiation Sum of all radiation over the entire spectrum of
emitted wavelengths.

Ultraviolet Region of the electromagnetic spectrum extending
approximately from 0. 01 to 0. 4 micron.

Visible Region of the electromagnetic spectrum extending
approximately from 0. 4 to 0. 75 micron.

Wavelength, A Distance measured along line of propagation
between two points which are in phase on
adjacent waves.

-6-



Section III

THEORY OF RADIATION HEAT TRANSFER*

BASIC CONCEPTS OF THERMAL RADIATION

The process of emission of radiant energy by a body, which depends
on its temperature, is called thermal radiation. Each body, by virtue of
its temperature, is constantly emitting electromagnetic radiation from its
surface into the surrounding space and is absorbing radiant energy
originating elsewhere and incident upon it. Electromagnetic radiation is
composed of all wavelengths, including extremely short-wave secondary
gamma rays and the longest radio waves. Theoretically, all bodies emit
radiation over the entire electromagnetic spectrum (Figure 1).

The amount of energy emitted generally varies with wavelength in a
manner similar to that shown in Figure Z. The curves give the spectral
distribution of radiation from a black body at temperatures of 2700, 1980,
and 1260 R. The maximum energy emitted by a body increases as the
temperature increases, and the wavelength at which the maximum energy is
radiated becomes shorter as the temperature increases.

The rate of radiation from a black, or ideal, body is proportional to
the fourth power of its absolute temperature. For other bodies, the rate of
radiation is also proportional to the fourth power of their absolute temperature,
but the magnitude varies depending on material, surface condition, and
temperature. The rate of emission of energy per unit area for non-black-
body materials is never greater than the rate of energy emission per unit area
from a black body. For this reason, the black body is used as a standard
or reference, and emission from other bodies is compared with it.

RADIATION LAWS

Kirchhoff's Law

Kirchhoff, in 1860, proposed a system consisting of a completely
enclosed hollow space into which a thin plate is placed, the enclosure and
plate being at the same temperature.

*The material in this section of the report was gathered from References
I through 5.
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By using the electromagnetic theory, which holds that radiation
falling upon a surface exerts a pressure upon that surface, and the concept
of mechanical equilibrium of radiation, it can be shown that the radiant
energy incident upon the plate must equal the energy radiated from the plate,
or work will be done upon the plate by moving it. The entire system is at
the same temperature, however, and the second law of thermodynamics
denies the possibility of transforming heat into external work unless a
temperature difference exists. Because the second law of thermodynamics
has thus far proven inviolate, the assumption of equal amounts of energy
incident upon the plate and radiated from the plate must be accepted.

Kirchhoff also suggested that a nearly periect black surface can be
produced by employing a hollow enclosure into which a small aperture is
available. Radiation passing into the enclosure through the aperture, which
itself acts as a black surface, can be made to suffer such a large number
of reflections around the walls of the enclosure that almost none of the
entering radiation can escape out of the enclosure through the aperture, and
the absorptance of the aperture approaches the limiting value of unity.

From the assumption of equilibrium of radiation, it is apparent that
a constant-temperature enclosure which receives radiant energy from a
source at the same temperature must emit an equal amount of radiant energy.
Such a system is now considered with the stipulation that the source is
emitting the maximum amount of energy that can be emitted from any source
of like size at this temperature. The enclosure absorbs all of the incoming
energy (a = 1). The enclosure, also, must emit back to the source, through
the aperture, an equal amount of energy. Then, if the Kirchhoff black
surface is acceptable, a black surface has the additional characteristic of
emittance equal to unity (e = 1). That is, a black surface must emit the
maximum amount of energy (per unit area and unit time) that can be radiated
from any surface at the same temperature.

It becomes obvious that Kirchhoff's black surface can be used as either
a black surface source or a black surface receiver with the stipulation that
the temperature of the entire enclosure must be constant and equal to that
for which the black surface characteristics are required.

Lambert's Cosine Law

Lambert's cosine law states that the radiant heat flux from a plane
source of radiation varies as the cosine of the angle measured from the
normal to the surface. This assumes diffuse radiation as opposed to
specular radiation, that is, in diffuse radiation, intensity I, expressed in
Btu/(hour)(s:lid angle)(projected area), is a constant regardless of the angle
from the normal to the surface.

10



Consider Figure 3, letting the elemental area dA 1 represent Lambert's
diffusely reflecting surface. When a constant density of radiation in space
is assumed and only radiation in the visible range is considered, the area
dA 1 cosS viewed from M appears equally as bright as the area dA 1 viewed
from N, and the quantity of light falling upon any area dA 2 is directly
proportional to the area dAl cos $. These same concepts apply equally as
well to radiation of longer wavelength as they do to radiation of the visible
range. The amount of radiant energy reaching a surface dA 2 from a black
surface dA 1 is directly proportional to the area dA 1 cos 9.

S~N

( W.SOLID ANGLE)

0 dAl

Figure 3. Representation of Lambert's Cosine Law

True surfaces vary from this law depending upon the material. When
the radiation intensity of a surface follows the cosine law, the directional
emittance is independent of the angle of emission and is identical with the
hemispherical emittance. Actually, the emittance of all true surfaces is
dependent to a certain degree on the angle of emission.
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Stefan -Boltzmnann's Law

Stefan empirically found the relationship between the Intensity of
radiation from a black surface source and the absolute temperature of the
surface. Later, Boltzmann theoretically reduced this same relationship,
stating that the heat radiated by a black body is proportional to the fourth
power of its absolute temperature, or

q = aAT 4  (1)

where

q = Total heat emitted, Btu/hr

a = Stefan-Boltzmann constant = 0. 1713 x 10-8 Btu/(hr)(sq ft)(°R4

A = Emissive area, sq ft

T = Absolute temperature, OR

For non-black bodies, the heat emitted equals the black body heat
emitted multiplied by the emittance, or

q = f(aAT 4 ) (Z)
where

c Emittance of non-black body

Wien's Displacement Law

For black body radiation, if the wave oi length A? at TZ is displaced
from that of length X1 at T1, such that X2T 2 = Al T 1 , the monochromatic
emissive powers at these two wavelengths are directly proportional to the
fifth powers of the absolute temperatures, or

SEX T 13)

5i iNEAz T5

Wien also determined that when the temperature of a radiating black
body increases, the wavelength corresponding to the maximum energy de-
creases in such a way that the product of the absolute temperature and
wavelength is a constant. (See Figure 2..) This is expressed as

XmaxT= 5216. 2 A(°R) (4)
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